build a site for free

Disparity selectivity across areas of mouse visual cortex


Small differences between the two retinal images, called binocular disparities, provide the visual system with crucial information for depth perception. In higher mammals, disparity selective neurons are found in many areas of the visual cortex, with somewhat different disparity tuning properties across primary (V1) and higher visual areas. Mouse V1 contains disparity selective neurons, but it is not clear how this property is processed beyond V1.

We therefore characterized binocular disparity in V1 and higher visual areas with two-photon calcium imaging, using random dot stereograms and other so-called dichoptically stimuli (where different stimuli are presented to the two eyes). We find systematic differences between these areas: In particular, neurons in area RL are systematically tuned to nearby objects only a few centimeters away from the mouse. Since RL, tucked between V1 and the barrel cortex, also contains many neurons that are activated by whisker stimulation, we speculate that this area may contain a multimodal map of near space in front of the mouse.

Transplanted embryonic neurons integrate into adult neocortical circuits

How do new neurons integrate into the adult brain? In collaboration with the lab of Magdalena Götz (Helmholtz Center Munich and Physiology Department, LMU), we replaced lost neurons by transplanting embryonic neurons into the visual cortex of adult mice. Our experiments show that these transplanted neurons mature into bona fide pyramidal cells, with all structural properties that characterize these cells including the anatomically correct connections. We then tested with genetically encoded calcium indicators whether transplanted neurons also become functionally integrated into the network. Indeed, these cells showed visually driven responses that were initially broadly and variably tuned, but then refined over the course of several weeks. Eventually, transplanted neurons displayed levels of orientation and direction selectivity that were indistinguishable from resident neurons in the host visual cortex. Thus, grafted neurons can integrate with great specificity and functional reliability into neocortical circuits that normally never incorporate new neurons in the adult brain (Falkner et al., Nature, 2016).

See also: 

Mark Hübener

Research Group Leader

Alessandro LaChioma


David Laubender

PhD student

Max Planck Institute of Neurobiology

Am Klopferspitz 18
82152 Munich-Martinsried